Thứ Sáu, ngày 12 tháng 2 năm 2016

Phát hiện sóng hấp dẫn, thành tựu làm thay đổi khoa học

TTO - Ngày 11-2, các nhà khoa học quốc tế khẳng định đã phát hiện thấy sóng hấp dẫn do thiên tài vật lý Albert Einstein tiên đoán một thế kỷ trước đây.
​Phát hiện sóng hấp dẫn, thành tựu làm thay đổi khoa học
Ông Roni Gross, giám đốc Thư viện Albert Einstein thuộc ĐH Hebrew ở Israel giới thiệu các tài liệu của Einstein về sóng hấp dẫn do ông tiên đoán 100 năm trước - Ảnh: Reuters
Trong cuộc họp báo được truyền hình trực tiếp trên mạng Internet từ Washington DC (Mỹ), các nhà khoa học thuộc Viện Công nghệ California (CIT), Viện Công nghệ Massachusetts (MIT) và tổ chức khoa học LIGO Scientific Collaboration cho biết đã phát hiện ra sóng hấp dẫn vào ngày 12-8-2015.
Sóng hấp dẫn này xuất phát từ hai lỗ đen va chạm vào nhau. Hai lỗ đen này có khối lượng lớn gấp 30 lần mặt trời, nằm ở vị trí cách trái đất khoảng 1,3 tỷ năm ánh sáng. Các nhà khoa học bắt được sóng hấp dẫn nhờ hai thiết bị dò laser khổng lồ ở Mỹ, một tại Louisiana và một ở Washington.
Nghe tiếng hai lỗ đen đụng nhau
Sóng hấp dẫn là các gợn sóng trong không - thời gian, lan tỏa trong vũ trụ với tốc độ ánh sáng, được nhà bác học Einstein tiên đoán 100 năm trước. Các nhà thiên văn học đã khổ công “săn lùng” sóng hấp dẫn trong nhiều thập kỷ qua. Bởi sóng hấp dẫn là vấn đề cuối cùng của thuyết tương đối rộng chưa được kiểm chứng.
Hai thiết bị laser có tên Đài quan sát sóng hấp dẫn giao thoa kế laser (LIGO) có khả năng đo được những dao dộng cực nhỏ từ sóng hấp dẫn. Sau khi phát hiện tín hiệu sóng hấp dẫn, các nhà khoa học đã chuyển đổi chúng thành sóng radio. Nhờ đó, họ nghe được tiếng hai lỗ đen va chạm vào nhau và nhập lại làm một.
“Chúng tôi thực sự nghe tiếng chúng đụng vào nhau trong đêm - nhà vật lý MIT Matthew Evans mô tả - Chúng tôi nhận được tín hiệu bắn tới trái đất, chúng tôi đưa nó vào loa và nghe thấy tiếng hai lỗ đen đụng nhau”.
AFP dẫn lời nhà khoa học MIT David Shoemaker, người đứng đầu dự án LIGO, cho biết sau nhiều tuần lễ thu được tín hiệu sóng hấp dẫn, nhóm nghiên cứu mới đủ tự tin khẳng định đó chính là sóng hấp dẫn. Và họ thực hiện hàng loạt cuộc kiểm tra để xác định khám phá này.
Các nhà khoa học cho biết việc phát hiện sóng hấp dẫn sẽ mở cánh cửa mới để quan sát vũ trụ và tìm hiểu về các vật thể bí ẩn như lỗ đen và sao neutron. Thông qua nghiên cứu sóng hấp dẫn, các nhà khoa học cũng sẽ có thể thấu hiểu được bản chất của vũ trụ thời kỳ mới khai sinh sau Vụ nổ lớn (Big Bang).
Cánh cửa quan sát vũ trụ
Tất cả những gì chúng ta biết về vũ trụ hiện nay đến từ các sóng điện từ như sóng radio, ánh sáng, hồng ngoại, tia X và tia gramma. Tuy nhiên các sóng này khi di chuyển trong vũ trụ chịu nhiều tác động, do đó chỉ tiết lộ cho con người một phần bức tranh vũ trụ.
Ngược lại, sóng hấp dẫn không vấp phải bất cứ cản trở nào, do đó mang theo nguồn thông tin phong phú. Ví dụ, lỗ đen không phát ra ánh sáng hay sóng radio vì có lực hấp dẫn quá lớn. Nhưng các nhà khoa học giờ có thể nghiên cứu lỗ đen qua sóng hấp dẫn.
Như vậy, việc phát hiện ra sóng hấp dẫn trên thực tế cũng đã khẳng định sự tồn tại của lỗ đen, vật thể bí ẩn nhất trong vũ trụ. Lỗ đen được hình thành sau khi những ngôi sao khổng lồ nổ tung. Ở trung tâm các thiên hà luôn tồn tại những lỗ đen siêu khổng lồ với trọng lượng lớn gấp mặt trời hàng triệu, thậm chí hàng tỷ lần.
Giới khoa học quốc tế tỏ ra vô cùng hào hứng với phát hiện mang tính cột mốc này. “Phát hiện này mở ra cửa sổ mới để quan sát vũ trụ” - Reuters dẫn lời chuyên gia Abhay Ashtekar, giám đốc Viện Lực hấp dẫn và vũ trụ thuộc ĐH Penn State (Mỹ).
Nhà vật lý Saul Teukolsky của ĐH Cornell đánh giá phát hiện sóng hấp dẫn là một trong những khám phá khoa học vĩ đại nhất trong vòng 50 năm qua. Giới chuyên gia dự báo nhiều khả năng phát hiện sóng hấp dẫn sẽ sớm giành giải Nobel Vật lý trong năm nay.

HIẾU TRUNG

Gravitational waves detected -- and that's creating waves in science

(CNN)Einstein was right.
Just over 100 years after he published his general theory of relativity, scientists have found what Albert Einstein predicted as part of the theory: gravitational waves.
"We have detected gravitational waves. We did it," said David Reitze, executive director of LIGO, the Laser Interferometer Gravitational-Wave Observatory, which was created to do just what Reitze announced.
Reitze made the announcement Thursday at the National Press Club in Washington surrounded by other LIGO researchers and National Science Foundation head France Cordova.
The gravitational waves -- ripples in space-time -- were created by the merging of two black holes, Reitze said. One black hole had the mass of 29 suns; the other was the equivalent of 36 suns. Each was perhaps 50 kilometers (30 miles) in diameter.
    More than a billion years ago -- LIGO estimates about 1.3 billion -- the two collided at half the speed of light. Gravitational waves pass through everything, so the result traveled through the universe for that time before reaching Earth.

    The 'chirp' of black holes colliding

    The gravitational waves stretched and compressed space around Earth "like Jell-O," said Reitze.
    However, the waves are so small that it takes a detector like LIGO, capable of measuring distortions one-thousandth the size of a proton, to observe them. They were observed on September 14, 2015.
    Scientists heard the sound of the black holes colliding as a "chirp" lasting one-fifth of a second. Though gravitational waves aren't sound waves, the increase in frequency the collision exhibited in its last milliseconds -- when the black holes were mere kilometers apart and growing closer -- is a frequency we can hear, said Deirdre Shoemaker, a Georgia Tech physicist who works on LIGO.
    LIGO is described as "a system of two identical detectors" -- one located in Livingston, Louisiana, the other in Hanford, Washington -- "carefully constructed to detect incredibly tiny vibrations from passing gravitational waves." The project was created by scientists from Caltech and MIT and funded by the National Science Foundation.
    Szabolcs Marka, a physicist at Columbia University who is leader of the LIGO member Columbia Experimental Gravity Group, said you could think of it as "a cosmic microphone."

    Einstein's concepts

    Gravitational waves were predicted by Einstein in his general theory of relativity in 1915, the theory that proposed space-time as a concept. The waves are a distortion of space-time.
    However, in order for us to detect them, they needed to be created by a mammoth event -- for example, the collision of two black holes.
    Black holes are a holy grail of the gravitational wave concept. To date, we'd been able only to see their aftereffects. Black holes themselves were a conjecture.
    "There's been a lot of indirect evidence for their existence," says Shoemaker, an expert in black holes. "But this is the first time we actually detect two black holes merging and we know the only thing that predicts that (is) gravitational radiation, (which) comes from a binary black hole merging. There's no other way we could have seen that but gravitationally."

    'Now we can listen to the universe'

    But is LIGO correct? Have we really detected gravitational waves?
    Scientists have what they call a "five-sigma" standard of proof, and LIGO's researchers say the gravitational wave discovery exceeds that.
    "It took six months of convincing ourselves that it was correct," says Shoemaker. "It goes beyond that five-sigma to proving that nothing was happening with the equipment that couldn't be understood."
    She's thrilled with the possibilities.
    "Imagine having never been able to hear before and all you can do is see," she says. "Now we can listen to the universe where we were deaf before. It's a different spectrum (from the electromagnetic spectrum). It's unlike anything we've ever detected before."
    "What's really exciting is what comes next," said Reitze at the announcement. "I think we're opening a window on the universe -- a window of gravitational wave astronomy."

    Einstein would be surprised

    Columbia University physicist Marka, who's been working on the project for more than a decade, said the discovery will open up new horizons, including direct tests of Einstein's general theory. Those could further support it -- or force physicists to come up with new ideas.
    "A physicist is always looking for a flaw in a theory. And the only way to find a flaw is to test it," Marka told CNN. "Einstein's theory did not present any flaws to us yet, and that is really scary. Physicists are very (skeptical) of flawless theories because then we have nothing to do."
    Ironically, Einstein didn't think gravitational waves would be discovered.
    "He thought gravitational waves are a beautiful construct, but they are so small nobody would ever be able to actually measure it," said Marka.